首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   470885篇
  免费   53064篇
  国内免费   723篇
  2018年   4989篇
  2017年   4724篇
  2016年   6718篇
  2015年   9552篇
  2014年   11009篇
  2013年   14779篇
  2012年   17415篇
  2011年   17655篇
  2010年   11649篇
  2009年   10383篇
  2008年   15247篇
  2007年   15697篇
  2006年   14801篇
  2005年   13922篇
  2004年   13996篇
  2003年   13013篇
  2002年   12602篇
  2001年   19493篇
  2000年   19399篇
  1999年   15429篇
  1998年   5600篇
  1997年   5553篇
  1996年   5283篇
  1995年   5286篇
  1994年   4950篇
  1993年   4948篇
  1992年   12751篇
  1991年   12670篇
  1990年   12420篇
  1989年   11877篇
  1988年   11023篇
  1987年   10390篇
  1986年   9909篇
  1985年   9686篇
  1984年   8031篇
  1983年   6958篇
  1982年   5246篇
  1981年   4725篇
  1980年   4392篇
  1979年   7523篇
  1978年   6065篇
  1977年   5382篇
  1976年   5057篇
  1975年   5869篇
  1974年   6436篇
  1973年   6231篇
  1972年   5579篇
  1971年   5182篇
  1970年   4390篇
  1969年   4320篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
11.
12.
13.
14.
Cystic Fibrosis (CF) is a human genetic disease that results in the accumulation of thick, sticky mucus in the airways, which results in chronic, life-long bacterial biofilm infections that are difficult to clear with antibiotics. Pseudomonas aeruginosa lung infection is correlated with worsening lung disease and P. aeruginosa transitions to an antibiotic tolerant state during chronic infections. Tobramycin is an aminoglycoside currently used to combat lung infections in individuals with CF. While tobramycin is effective at eradicating P. aeruginosa in the airways of young patients, it is unable to completely clear the chronic P. aeruginosa infections in older patients. A recent report showed that co-addition of tobramycin and mannitol enhanced killing of P. aeruginosa grown in vitro as a biofilm on an abiotic surface. Here we employed a model system of bacterial biofilms formed on the surface of CF-derived airway cells to determine if mannitol would enhance the antibacterial activity of tobramycin against P. aeruginosa grown on a more clinically relevant surface. Using this model system, which allows the growth of robust biofilms with high-level antibiotic tolerance analogous to in vivo biofilms, we were unable to find evidence for enhanced antibacterial activity of tobramycin with the addition of mannitol, supporting the observation that this type of co-treatment failed to reduce the P. aeruginosa bacterial load in a clinical setting.  相似文献   
15.
16.
Some epiphytic Hymenophyllaceae are restricted to lower parts of the host (<60 cm; 10–100 μmol photons m-2 s-1) in a secondary forest of Southern Chile; other species occupy the whole host height (≥10 m; max PPFD >1000 μmol photons m-2 s-1). Our aim was to study the photosynthetic light responses of two Hymenophyllaceae species in relation to their contrasting distribution. We determined light tolerance of Hymenoglossum cruentum and Hymenophyllum dentatum by measuring gas exchange, PSI and PSII light energy partitioning, NPQ components, and pigment contents. H. dentatum showed lower maximum photosynthesis rates (Amax) than H. cruentum, but the former species kept its net rates (An) near Amax across a wide light range. In contrast, in the latter one, An declined at PPFDs >60 μmol photons m-2 s-1. H. cruentum, the shadiest plant, showed higher chlorophyll contents than H. dentatum. Differences in energy partitioning at PSI and PSII were consistent with gas exchange results. H. dentatum exhibited a higher light compensation point of the partitioning of absorbed energy between photochemical Y(PSII) and non-photochemical Y(NPQ) processes. Hence, both species allocated energy mainly toward photochemistry instead of heat dissipation at their light saturation points. Above saturation, H. cruentum had higher heat dissipation than H. dentatum. PSI yield (YPSI) remained higher in H. dentatum than H. cruentum in a wider light range. In both species, the main cause of heat dissipation at PSI was a donor side limitation. An early dynamic photo-inhibition of PSII may have caused an over reduction of the Qa+ pool decreasing the efficiency of electron donation to PSI. In H. dentatum, a slight increase in heat dissipation due to acceptor side limitation of PSI was observed above 300 μmol photons m-2s-1. Differences in photosynthetic responses to light suggest that light tolerance and species plasticity could explain their contrasting vertical distribution.  相似文献   
17.
There is considerable need for accurate suicide risk assessment for clinical, screening, and research purposes. This study applied the tripartite affect-behavior-cognition theory, the suicidal barometer model, classical test theory, and item response theory (IRT), to develop a brief self-report measure of suicide risk that is theoretically-grounded, reliable and valid. An initial survey (n = 359) employed an iterative process to an item pool, resulting in the six-item Suicidal Affect-Behavior-Cognition Scale (SABCS). Three additional studies tested the SABCS and a highly endorsed comparison measure. Studies included two online surveys (Ns = 1007, and 713), and one prospective clinical survey (n = 72; Time 2, n = 54). Factor analyses demonstrated SABCS construct validity through unidimensionality. Internal reliability was high (α = .86-.93, split-half = .90-.94)). The scale was predictive of future suicidal behaviors and suicidality (r = .68, .73, respectively), showed convergent validity, and the SABCS-4 demonstrated clinically relevant sensitivity to change. IRT analyses revealed the SABCS captured more information than the comparison measure, and better defined participants at low, moderate, and high risk. The SABCS is the first suicide risk measure to demonstrate no differential item functioning by sex, age, or ethnicity. In all comparisons, the SABCS showed incremental improvements over a highly endorsed scale through stronger predictive ability, reliability, and other properties. The SABCS is in the public domain, with this publication, and is suitable for clinical evaluations, public screening, and research.  相似文献   
18.
Electrical bursting oscillations of mammalian pancreatic beta-cells are synchronous among cells within an islet. While electrical coupling among cells via gap junctions has been demonstrated, its extent and topology are unclear. The beta-cells also share an extracellular compartment in which oscillations of K+ concentration have been measured (Perez-Armendariz and Atwater, 1985). These oscillations (1-2 mM) are synchronous with the burst pattern, and apparently are caused by the oscillating voltage-dependent membrane currents: Extracellular K+ concentration (Ke) rises during the depolarized active (spiking) phase and falls during the hyperpolarized silent phase. Because raising Ke depolarizes the cell membrane by increasing the potassium reversal potential (VK), any cell in the active phase should recruit nonspiking cells into the active phase. The opposite is predicted for the silent phase. This positive feedback system might couple the cells' electrical activity and synchronize bursting. We have explored this possibility using a theoretical model for bursting of beta-cells (Sherman et al., 1988) and K+ diffusion in the extracellular space of an islet. Computer simulations demonstrate that the bursts synchronize very quickly (within one burst) without gap junctional coupling among the cells. The shape and amplitude of computed Ke oscillations resemble those seen in experiments for certain parameter ranges. The model cells synchronize with exterior cells leading, though incorporating heterogeneous cell properties can allow interior cells to lead. The model islet can also be forced to oscillate at both faster and slower frequencies using periodic pulses of higher K+ in the medium surrounding the islet. Phase plane analysis was used to understand the synchronization mechanism. The results of our model suggest that diffusion of extracellular K+ may contribute to coupling and synchronization of electrical oscillations in beta-cells within an islet.  相似文献   
19.
J L Reynolds 《CMAJ》1993,148(2):130-131
  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号